HEAT STRESS: **SWINE**

Heat stress significantly reduces feed intake, therefore directly impacting growth performance of pigs and profitability.'

Heat stress in swine has consistently been associated with:

Reduced feed intake

Reduced growth rate

Increased sow mortality

Reduced fertility

Increased non-productive sow days

kemin.com/chromium • 800-777-8307

© Kemin Industries, Inc and its group of companies 2020. All rights reserved ®TM Trademarks of Kemin Industries, Inc. U.S.A.

KemTRACE® CHRONIUM Essential to you and your operation.

72°F

Temperatures as low as 72 degrees can cause stress on pigs.

Average exposure to heat stress (hrs/vr)

 North Carolina
 1,126
 1,461

 Illinois
 938
 1,204

 Indiana
 792
 1,052

 Iowa
 789
 1,010

 Minnesota
 455
 623

Increase in average sow days open²

North Carolina	7.2
Illinois	6.2
lowa	5.2
Indiana	4.7
Minnesota	26

HEAT STRESS: **SWINE**

Heat stress is one of the **costliest issues** facing pork producers.

Day open loss (\$/d) =

\$3.00+

Price of one non-productive sow day

Reduced average daily feed intake value (\$/lb) =

\$0.12+

Weight gain loss (\$/head) =

\$2.50+

Death due to heat stress

1 in 1,000 pigs

Evidence suggests insulin action is a key component of heat stress response.²

Chromium improves insulin function and results in efficient clearance of glucose from the bloodstream. Increased glucose uptake may improve thermal tolerance in heat-stressed animals.

- 1. Rhoads. 2013. Nutritional Interventions to Alleviate the Negative Consequences of Heat Stress. Adv. Nutr. 4: 267-276.
- 2. St-Pierre, N.R., B. Cobanov, and G. Schnitkey. 2003. Economic Losses from Heat Stress by US Livestock Industries. Journal of Dairy Science. 86: E52–E77.

